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The photodimerization of trans-stilbene was first observed by Ciamican 
and Silber [l] and has subsequently been reinvestigated several times [ 21. 
Unlike the two unimolecular photochemical reactions of the stilbenes (cis- 
truns interconversion [ 31 and cis-stilbene-dihydrophenanthrene intercon- 
version [4] ) the photodimerization reaction has eluded quantitative study. 
In the course of our investigations of stilbene photoaddition reactions [ 5 - 81, 
kinetic evidence for the involvement of a stilbene excimer at stilbene con- 
centrations above 10s2 M was obtained [8] . It thus became necessary to 
determine the concentration dependence of trans-stilbene isomerization 
and dimerization. 

Experimental 
tians-Stilbene (Aldrich) was recrystallized twice from benzene-hexane 

and twice from absolute ethanol. Spectroquality benzene (Aldrich) was 
refluxed over two successive portions of phosphorus pentoxide and distilled, 
the middle 70% being retained. Benzene solutions containing varying stilbene 
concentrations and two internal standards (hexadecane, 1.5 X 10e3 M, and 
eicosane, 1.2 X 10e3 M) were degassed and sealed in 15 mm o.d. Pyrex test 
tubes. The solutions were irradiated on a merry go round apparatus at 25 “C 
using a 450 W Hanovia lamp with a potassium chromate filter solution to 
isolate 313 nm light. Irradiated solutions were analyzed by gas chromatography 
on a 4 in X l/8 in column containing 5% SF 96 on Chromosorb G calibrated 
with authentic samples of cis-stilbene and stilbene dimers. Conversions of 
truns-stilbene to cis-stilbene were less than 10% in all cases. Light intensities 
were determined using benzophenone-benzhydrol actinometers [9]. Stilbene 
dimers were stable under the conditions of irradiation and analysis. 

Results and discussion 
Quantum yields for stilbene Pans to cis isomerization (at) and dimeriza- 

tion (cPdi, ) are summarized in Table 1. The value of @, is independent of 
stilbene concentration below 0.1 M, but decreases at higher concentrations. 
Self-quenching of Puns-stilbene fluorescence can also be detected at concen- 



TABLE 1 

Quantum yields for bmns-stilbene isomerization and dimerization 

[ trans-stilbene] (M) @t @dim 

0.01 0.45 * 0.02 <O.Ol 
0.05 0.45 0.03 f 0.01 
0.10 0.44 0.08 * 0.02 
0.25 0.38 0.19 
0.40 0.31 0.26 
0.55 0.27 0.33 

trations above 0.1 M. Stilbene dimerization competes efficiently with isomeri- 
zation at concentrations above 0.1 M. Determination of accurate dimerization 
quantum yields at lower concentrations would require extrapolation of mea- 
sured values to zero conversion. The increase in dimerization with increasing 
stilbene concentration is proportional to the decrease in isomerization and 
obeys the following empirical formula: 

a* = 1.6 (@;-- Qt) (1) 

The simplest mechanism for stilbene isomerization and dimerization is 
given by the equations 
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where kd includes radiative and non-radiative decay and X is an encounter 
complex or excimer. This mechanism yields the following expressions for 
stilbene isomerization and dimerization: 

#f&l = kci + kt + k, C-1 
kt kt 

@dim -1 = kdim + kc, 1 + kd + k, 
bin, ke It-S1 ) 

(2) 
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A plot of +; ’ versus [t-S] has an intercept of 2.0 + 0.1 and a slope of 
3.1 + 0.2, which afford the kinetic relationship k, = kd and k, = 3.1 kt. 
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A plot of @‘-l uersus [t-S] -’ has an intercept of 1.3 f 0.2 and a limiting 
slope of 1.0 it: 0.1, which afford the kinetic relationships kdim = 3.3 12, and 
k, = 1.3 (k, + kd )_ In the absence of self-quenching, half of the stilbene 
singlets isomer&_ Self-quenching leads to dimerization with a quantum yield 
of 0.8 * 0.2, thus accounting for the empirical relationship given in eqn. (1). 

The calculation of absolute rate constants is prevented by the occur- 
rence of double exponential fluorescence decay at room temperature [lo] . 

The short lived component (0.07 ns) is presumably due to prompt fluores- 
cence from the planar singlet state and the long lived component (1.5 ns) 
is due to delayed fluorescence resulting from thermal repopulation of the 
planar singlet from a twisted singlet. The effective singlet lifetime in singlet 
quenching experiments is most likely a weighted average of the prompt and 
delayed lifetimes. The rate constant k, for self-quenching must fall in the 
range log - 2 X 1O1* s-l. If stilbene excimer formation is reversible, then 
this range provides a lower limit for the rate constant for excimer formation. 
Stilbene excimer has been observed following 7 irradiation of a squalene 
glass at 77 K [ 111, but is non-fluorescent at room temperature in benzene 
solution. Rapid dimerization of the stilbene excimer can readily account for 
the absence of excimer fluorescence [73. 
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